YEAR 10 SCIENCE - Australian Curriculum and C2C Mapping

Science as a Human Endeavour

Nature and development of science
- Scientific understanding, including models and theories, are contestable and are refined over time through a process of review by the scientific community (ACSHE191)
- Advances in scientific understanding often rely on developments in technology and technological advances are often linked to scientific discoveries (ACSHE192)

Use and influence of science
- People can use scientific knowledge to evaluate whether they should accept claims, explanations or predictions (ACSHE194)
- Advances in science and emerging sciences and technologies can significantly affect people’s lives, including generating new career opportunities (ACSHE195)
- The values and needs of contemporary society can influence the focus of scientific research (ACSHE230)

Science Inquiry Skills

Questioning and predicting
- Formulate questions or hypotheses that can be investigated scientifically (ACSIS198)

Planning and conducting
- Plan, select and use appropriate investigation methods, including field work and laboratory experimentation, to collect reliable data; assess risk and address ethical issues associated with these methods (ACSIS199)
- Select and use appropriate equipment, including digital technologies, to systematically and accurately collect and record data (ACSIS200)

Processing and analysing data and information
- Analyse patterns and trends in data, including describing relationships between variables and identifying inconsistencies (ACSIS203)
- Use knowledge of scientific concepts to draw conclusions that are consistent with evidence (ACSIS204)
- Evaluate conclusions, including identifying sources of uncertainty and possible alternative explanations, and describe specific ways to improve the quality of the data (ACSIS205)
- Critically analyse the validity of information in secondary sources and evaluate the approaches used to solve problems (ACSIS206)

Communicating
- Communicate scientific ideas and information for a particular purpose, including constructing evidence based arguments and using appropriate scientific language, conventions and representations (ACSIS208)

Science Understandings

Chemical Sciences
- The atomic structure and properties of elements are used to organise them in the Periodic Table (ACSSU186)
- Different types of chemical reactions are used to produce a range of products and can occur at different rates (ACSSU187)

Physical Sciences
- Energy conservation in a system can be explained by describing energy transfers and transformations (ACSSU190)
- The motion of objects can be described and predicted using the laws of physics (ACSSU229)

Earth and Space Sciences
- The universe contains features including galaxies, stars and solar systems and the Big Bang theory can be used to explain the origin of the universe (ACSSU188)
- Global systems, including the carbon cycle, rely on interactions involving the biosphere, lithosphere, hydrosphere and atmosphere (ACSSU189)

Biological Sciences
- The transmission of heritable characteristics from one generation to the next involves DNA and genes (ACSSU184)
- The theory of evolution by natural selection explains the diversity of living things and is supported by a range of scientific evidence (ACSSU185)

C2C

Unit 3 – Atomic Structure and Theory
Unit 4 – Covalent Bonding
Unit 5 – Forces and Motion
Unit 6 – Energy and Motion
Unit 7 – Carbon and Nutrient Cycles
Unit 8 – Astronomy
Unit 1 – Genetics Concepts and Exploring Heredity

NVeec Activities
- Geology of the Springbrook Plateau Catchment study
<table>
<thead>
<tr>
<th>Curriculum Priorities</th>
<th>YEAR 10 SCIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student ICT Expectations</td>
<td>Students will use a digital camera to capture images, compasses and GPS for navigation, magnifying glasses to observe plants, soil, animals and rocks. The use of the following equipment to perform water quality test: digital thermometer, dissolved oxygen meter, turbidity meter, pH pockets sensor, salinity (TDS) pockets sensor, magnifying lenses and nets. The study of forests types uses: soil pH test kit, relative humidity meter, anemometer, tape measure and light meter.</td>
</tr>
</tbody>
</table>
| **General Capabilities** | **Literacy**
Students will:
- understand and use new and subject specific vocabulary used in science contexts
- procedural vocabulary (e.g. discuss, list, label, link, explain, examine, predict, reflect)
- use visual representations (e.g. diagrams, tables, satellite imagery, maps)

Numeracy
Students will:
- analyse data
- use appropriate measurements and graph numerical data
- identify trends and patterns from numerical data and graphs

Critical and creative thinking
Students will:
- generate and evaluate knowledge and ideas
- make predictions
- analyse and evaluate and summarise information

Personal and social competence
Students will:
- make responsible decisions
- work effectively in teams, follow procedures and work safely
- make informed choices about issues that impact on the environment around them

Ethical Behaviour
Students will consider how decisions made about global contemporary issues affect life and the extent of humans’ ethical responsibility for the welfare of the planet. |
| **Cross-curriculum priorities** | **Aboriginal and Torres Strait Islander histories and cultures**
Students will develop an understanding that Aboriginal people have particular ways of knowing about the world. Aboriginal people have developed knowledge about the world through observation, using all the senses; through prediction and hypothesis; through testing (trial and error); and through making generalisations within specific contexts. Students will discuss Aboriginal and Torres Strait Islander peoples’ knowledge about climate change, global systems and climate change.

Asia and Australia’s engagement with Asia
Students will consider the development of renewable energy sources and technologies in the Asia-Pacific and African regions.

Sustainability
Students will:
- consider how humans interact with and influence the environment in which they live.
- propose a balanced approach to the way humans interact with each other and the environment
- focus on protecting environments through action that recognise the interdependence of environmental, societal, cultural and economic considerations. |